Methane Coupling Using Hydrogen Plasma and Pt/γ-Al₂O₃ Catalyst

Bin DAI^{1,2}*, Wei Min GONG¹, Xiu Ling ZHANG¹, Ren HE¹

¹Plasma Chemistry Laboratory, Dalian University of Technology, Dalian 116012 ²Department of chemistry, Shihezi University, Shihezi 832002

Abstract: In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/γ -Al₂O₃ catalyst. Experimental results showed that Pt/γ -Al₂O₃ catalyst has catalytic activity for methane coupling to C₂H₄. Over sixty percent of outcomes of C₂ hydrocarbons were detected to be ethylene.

Keywords: Pulse corona plasma, methane coupling, hydrogen, Pt/y-Al₂O₃ catalyst.

Plasma technology used for methane conversion has attracted much more attention in the past ten years¹. Such as microwave, radio frequency, pulsed, AC, and DC plasmas²⁻⁹. We have reported that methane coupling under pulse corona plasma in the presence of hydrogen¹⁰. The addition of hydrogen could improve conversion of methane and yield of C₂ hydrocarbons, moreover, increasing with increment of hydrogen. Conversion of 57.1% methane and yield of 43.4% C₂ hydrocarbons were obtained in low power, but acetylene was inevitably the main product of methane coupling.

In this paper, Pt/γ -Al₂O₃ catalyst was firstly introduced into coupling of methane in the presence of hydrogen under pulse corona plasma at room temperature and normal pressure. The experiment showed that Pt/γ -Al₂O₃ catalyst has catalytic activity for methane coupling to C₂H₄.

The experimental installation used in the present investigation was the same as that reported previously¹⁰. The Pt/ γ -Al₂O₃ catalyst was prepared by the conventional impregnation method using aqueous of H₂PtCl₆. The support was γ -Al₂O₃, 40~80 mesh. The catalyst was dried at 383 K followed by calcination in an air stream at certain temperature for 4 h, and then reducing under hydrogen at 473 K for a few hours before reaction.

Results and Discussion

Catalytic performance of Pt/γ - Al_2O_3 on methane conversion

Table 1 showed methane reaction experiment results over Pt/γ -Al₂O₃ catalyst with

^{*}E-mail: dbinly@263.net

Bin DAI et al.

various loading. From **Table 1**, it could be seen that the activity of Pt/γ -Al₂O₃ catalyst increased with Pt loading from 1.5 wt ×10⁻⁵ to 6 wt ×10⁻⁵, loading of Pt 6 wt ×10⁻⁵ the conversion of C₂H₄ decreased. The most active and highest selectivity for ethylene was the catalyst with the Pt loading of 6 wt ×10⁻⁵.

Compared with blank, the adding of medium (γ -Al₂O₃ carrier or Pt/ γ -Al₂O₃ catalyst) cut down conversion of methane, the probable reason deemed to be that activation of medium consumed the part of input plasma power. The Pt/ γ -Al₂O₃ catalysts also catalyzed the part of prepared C₂ hydrocarbons to C₄ products and other carbon species.

Catalyst	Conv. of CH ₄	Selectivity (%)			Distribution (%)		
$(w.t10^{-5})$	(%)	C_2	C_4	C^{b}_{unkn}	C_2H_2	C_2H_4	C_2H_6
Blank	42.2	63.3	—	36.7	6.6	8.3	85.1
γ -Al ₂ O ₃	30.9	67.1	—	32.9	8.7	10.2	81.2
$1.5Pt/\gamma-Al_2O_3$	24.4	65.7	1.6	32.7	13.4	39.4	47.3
3 Pt/γ-Al ₂ O ₃	27.7	66.3	1.9	31.8	17.3	50.7	32.0
6 Pt/γ-Al ₂ O ₃	33.3	67.5	2.3	30.2	22.3	59.2	18.6
9 Pt/γ-Al ₂ O ₃	30.9	65.2	2.8	32.0	62.5	33.3	4.2
12 Pt/y-Al ₂ O ₃	29.5	64.1	3.3	32.6	77.4	19.0	3.6

Table 1 Catalytic performance of Pt/γ-Al₂O₃ on methane conversion^a

^a Reaction condition: pulse voltage = 32kV, repeat frequency = 80Hz, power = 30W, $CH_4:H_2 = 1:4$, flow rate = 25mL/min, catalyst 1.2 mL. ^bC_{unkn} means undetermined carbon species.

Effect of applied energy on methane conversion

Table 2 showed the effect of plasma power input for activation of methane on Pt/γ -Al₂O₃ catalyst. The data from **Table 2**, showed that the conversion of methane, selectivity of C₂ hydrocarbons and the content of C₂H₄ increased gradually with increment of power input. But, hoist of applied energy also promoted the production of C₄ hydrocarbons in the system. The probably reason was that elevating of applied energy could promote catalytic activity of Pt/ γ -Al₂O₃ on coupling methane to ethylene.

 Table 2
 Effect of applied energy on methane conversion^a

Power/w	Conv. of CH4	Selectivity (%)			Distribution (%)		
	(%)	C_2	C_4	C ^b unkn	C_2H_2	C_2H_4	C_2H_6
15	24.2	64.6	/	35.4	13.6	19.5	66.9
25	32.4	65.5	1.8	32.7	20.2	49.8	30.1
35	39.0	68.6	2.2	29.2	21.8	63.3	15.0
45	41.6	69.8	2.6	27.6	21.5	68.5	10.1

^a Reaction condition: 6×10⁻⁵w.t catalyst 1.2 mL,the other conditions were the as same in Table 1

References

- 1. B. W. Wang, G. H. Xu, C. J. Liu, *Journal of Chemical Industry and Engineering* (in Chinese), **2001**, *52* (8), 659.
- 2. L. T. Hsieh, W. J. Lee, C. Y. Chen, et al., Plasma Chemistry and Plasma Processing, 1998, 18 (2), 215.
- 3. L. Bromberg, D. R. Cohn, A. Rabinovich, et al., International Journal of Hydrogen Energy,

713 Methane Coupling Using Hydrogen Plasma and Pt/γ-Al₂O₃ Catalyst

1999, *24*, 1131.

- A. M. Huang, G. G. Xia, J. Y. Wang, *et al., Journal of Catalysis*, **2000**, *189*, 349.
 B. Dai, X. L. Zhang, W. M. Gong, *et al., Plasma Science & Technology*, **2000**, *2* (6), 577.

- S. D. Dai, N. E. Zhang, W. M. Gong, et al., Plasma Science & Technology, 2000, 2 (6), 577.
 Y. Li, G. H. Xu, C. J. Liu, et al., Energy & Fuels, 2001, 15, 299.
 S. L. Yao, E. Suzuki, A. Nakayama, Thin Solid Films, 2001, 390, 165.
 B. Dai, X. L. Zhang, W. M. Gong, et al., Plasma Science & Technology, 2001, 3 (1), 637.
- S. Kado, K. Urasaki, Y. Sekine, *Chemical Communications*, 2001, 5, 415.
 B. Dai, X. L. Zhang, L. Zhang, et al., *Science in China (B)*, 2001, 44 (2), 191.

Received 8 November, 2001